2,184 research outputs found

    Mitochondria and neuroplasticity

    Get PDF
    The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD+), and regulating subcellular Ca2+ and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke

    Ageing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes

    Get PDF
    Background: Ageing is associated with gastrointestinal dysfunction, which can have a major impact on quality of life of the elderly. A number of changes in the innervation of the gut during ageing have been reported, including neuronal loss and degenerative changes. Evidence indicates that reactive oxygen species (ROS) are elevated in ageing enteric neurons, but that neurotrophic factors may reduce generation of neuronal ROS. Two such factors, glial cell line derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) have also been found to protect enteric neurons against oxidative stress induced cell death of enteric ganglion cells in vitro. We have investigated the possible roles of neurotrophic factors further, by examining their expression in the gut during ageing, and by analysing their effects on antioxidant enzyme production in cultures of enteric ganglion cells. Results: Analysis of the expression of GDNF and its receptors c-Ret and GFR α − 1 in rat gut by RT-PCR showed that expression continues throughout life and into ageing, in both ad libitum(AL) and calorically-restricted (CR) animals. Levels of expression of GDNF and GFR α − 1 were elevated in 24 month AL animals compared to 24 month CR animals, and to 24 CR and 6 month control animals respectively. The related factor Neurturin and its receptor GFR α − 2 were also expressed throughout life, the levels of the GFR – α-2(b) isoform were reduced in 24 m AL animals. Immunolabelling showed that c-Ret and GFR α − 1 proteins were expressed by myenteric neurons in ageing animals. GDNF, but not NT-3, was found to increase expression of Cu/Zn superoxide dismutase and catalase by cultured enteric ganglion cells. Conclusions: The neurotrophic factors GDNF and neurturin and their receptors continue to be expressed in the ageing gut. Changes in the levels of expression of GDNF , GFR α-1 and GFR α-2(b) isoform occurred in 24 m AL animals. GDNF, but not NT-3, increased the levels of antioxidant enzymes in cultured enteric ganglion cells, indicating a possible mechanism for the reported protective effect of GDNF against menadione-induced neuronal apoptosis in the ageing gut. Together these data suggest that GDNF family members may play a protective role in the gut throughout life, and support the suggestion that dysregulation of neurotrophic factor support could contribute to neuronal ageing in the gut

    Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and Increases Their Vulnerability to Stroke

    Get PDF
    Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF

    Geomorphological evolution of a debris‐covered glacier surface

    Get PDF
    There exists a need to advance our understanding of debris‐covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure‐from‐motion (UAV‐SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris‐covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a‐1; maximum 13.3 m a‐1). We combined elevation change data with local meteorological data and a sub‐debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a‐1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub‐decadal timescales, and open avenues for future research to explore glacier‐scale spatiotemporal patterns of debris remobilization

    β-Amyloid 25-35 Peptide Reduces the Expression of Glutamine Transporter SAT1 in Cultured Cortical Neurons

    Get PDF
    β-Amyloid (Aβ) peptides may cause malfunction and death of neurons in Alzheimer’s disease. We investigated the effect of Aβ on key transporters of amino acid neurotransmission in cells cultured from rat cerebral cortex. The cultures were treated with Aβ(25-35) at 3 and 10 μM for 12 and 24 h followed by quantitative analysis of immunofluorescence intensity. In mixed neuronal–glial cell cultures (from P1 rats), Aβ reduced the concentration of system A glutamine transporter 1 (SAT1), by up to 50% expressed relative to the neuronal marker microtubule-associated protein 2 (MAP2) in the same cell. No significant effects were detected on vesicular glutamate transporters VGLUT1 or VGLUT2 in neurons, or on glial system N glutamine transporter 1 (SN1). In neuronal cell cultures (from E18 rats), Aβ(25-35) did not reduce SAT1 immunoreactivity, suggesting that the observed effect depends on the presence of astroglia. The results indicate that Aβ may impair neuronal function and transmitter synthesis, and perhaps reduce excitotoxicity, through a reduction in neuronal glutamine uptake

    Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro

    Get PDF
    BackgroundTitanium dioxide is a widely used nanomaterial whose photo-reactivity suggests that it could damage biological targets (e.g., brain) through oxidative stress (OS).ObjectivesBrain cultures of immortalized mouse microglia (BV2), rat dopaminergic (DA) neurons (N27), and primary cultures of embryonic rat striatum, were exposed to Degussa P25, a commercially available TiO2 nanomaterial. Physical properties of P25 were measured under conditions that paralleled biological measures.FindingsP25 rapidly aggregated in physiological buffer (800–1,900 nm; 25°C) and exposure media (~ 330 nm; 37°C), and maintained a negative zeta potential in both buffer (–12.2 ± 1.6 mV) and media (–9.1 ± 1.2 mV). BV2 microglia exposed to P25 (2.5–120 ppm) responded with an immediate and prolonged release of reactive oxygen species (ROS). Hoechst nuclear stain was reduced after 24-hr (≥100 ppm) and 48-hr (≥2.5 ppm) exposure. Microarray analysis on P25-exposed BV2 microglia indicated up-regulation of inflammatory, apoptotic, and cell cycling pathways and down-regulation of energy metabolism. P25 (2.5–120 ppm) stimulated increases of intracellular ATP and caspase 3/7 activity in isolated N27 neurons (24–48 hr) but did not produce cytotoxicity after 72-hr exposure. Primary cultures of rat striatum exposed to P25 (5 ppm) showed a reduction of immunohistochemically stained neurons and microscopic evidence of neuronal apoptosis after 6-hr exposure. These findings indicate that P25 stimulates ROS in BV2 microglia and is nontoxic to isolated N27 neurons. However, P25 rapidly damages neurons at low concentrations in complex brain cultures, plausibly though microglial generated ROS

    Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Get PDF
    BACKGROUND: Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. RESULTS: In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E(2 )pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. CONCLUSION: Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms

    Calcium Ions Promote Formation of Amyloid β-Peptide (1–40) Oligomers Causally Implicated in Neuronal Toxicity of Alzheimer's Disease

    Get PDF
    Amyloid β-peptide (Aβ) is directly linked to Alzheimer's disease (AD). In its monomeric form, Aβ aggregates to produce fibrils and a range of oligomers, the latter being the most neurotoxic. Dysregulation of Ca2+ homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. We compared the aggregation pattern of Aβ(1–40) and that of Aβ(1–40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease. We found that in the presence of Ca2+, Aβ(1–40) preferentially formed oligomers similar to those formed by Aβ(1–40)E22G with or without added Ca2+, whereas in the absence of added Ca2+ the Aβ(1–40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results of which were further supported by thioflavin T fluorescence experiments. In the samples without Ca2+, Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1–40), that have been implicated in the pathogenesis of AD

    Amyloid-β Triggers the Release of Neuronal Hexokinase 1 from Mitochondria

    Get PDF
    Brain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aβ-induced oxidative stress and HK activity. We found that Aβ triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aβ oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aβ-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aβ-induced oxidative stress and neuronal death. Results suggest that Aβ-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
    corecore